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An open system or open resonator is a domain of wave activity separated from the
exterior by a partly open or partly transparent surface. Such open resonators lose
energy to infinity through radiation. The numerical computation of the corresponding
resonances is complicated by spurious reflections of the outgoing waves at the
necessarily finite grid boundaries. These reflections can be reduced to extremely low
levels by applying perfectly matched layer (PML) absorbing boundary conditions,
which separate the discrete resonances from the continuous spectrum. Using a simple
one-dimensional model problem, the influence of the various PML parameters is
determined by a numerical error analysis. In addition to one-dimensional open
resonators, two-dimensional open resonators as well as various resonating structures in
waveguides are considered, and the resonant spectra and selected modes are evaluated.
For the first time, leaky modes are computed for several resonating structures in a
waveguide in addition to the trapped modes published in the literature. In applications,
leaky mode resonances are often more important than trapped mode resonances.
Gap tones, observed in a model problem of high-lift configurations, are identified as
transversal resonant modes with the lowest radiation losses.

1. Introduction
Resonances are of importance in many wave propagation problems with bounding

surfaces. Usually they manifest themselves by a large response of the system to
external excitation. If the surface separating an interior from an exterior domain is
partly open or partly transparent, we speak of an open system or open resonator.
The main difference between open and closed resonators is that in the absence of
dissipative losses the resonant frequencies of closed resonators are real, whereas
those of open resonators are typically complex owing to radiation losses. For open
resonators this results in a reduced modal density, i.e. often only a few modes have
a quality factor high enough to be of physical significance. Energy is radiated away
from the open resonator via so-called leaky waves. Instead of Dirichlet or Neumann
boundary conditions, a radiation condition, allowing only outgoing waves, has to be
imposed.

A typical and well-known example of an open acoustic resonator is a violin with
two types of resonances, namely wood resonances and air resonances (Hutchins 1962).
Here we are only interested in air resonances. According to Hutchins, a pioneer in
violin acoustics, the frequency of the main air resonance (together with the wood
resonance) is an important indicator of the quality of a violin. The vibrations inside
the violin are communicated to the outside through the f-holes in the top of the
instrument. The resonant air frequencies of the violin are then determined by the air
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volume of the instrument body together with the form and area of these f-holes. As
far as we know only approximate boundary conditions have been used at the f-holes
for the computation of resonances in such a complicated geometry, cf. Elejabarrietta,
Santamaria & Ezcurra (2002). However, an ever increasing number of computational
aeroacoustics (CAA) publications shows the growing need for predicting acoustic
resonances more exactly for complex open geometries.

Massive research efforts have been directed towards the exploration of
electromagnetic resonances in open resonators because they play an important role
as oscillatory systems in numerous applications such as lasers, light-emitting diodes,
channel drop filters, etc. It is not surprising that Bérenger (1994) applied his perfectly
matched layer (PML) technique first to electromagnetic waves. In most cases, this
PML method has been used for time-domain problems, but typical examples for
frequency-domain resonance computations of electromagnetic waves are Hyun et al.
(1997) and Hwang et al. (1998). Applying the analytical Wiener–Hopf technique and
the approximate parabolic method, the classical monograph by Weinstein (1969) is
one of the few treating resonances in open systems. An extensive literature exists also
for gravitational waves in the open systems of astrophysics where the resonant modes
are usually termed quasi-normal modes, see for example Kokkotas & Schmidt (1999)
and the literature cited therein. However, we are not aware of any application of the
PML technique in this field, contrary to elastic waves where PMLs have been used
in the problem of locating buried land mines (Schröder & Scott 2000).

Resonances can also have detrimental effects by causing large forces or sound
pressure levels. Maniar & Newman (1997) and Evans & Porter (1997) demonstrated
impressively how the hydrodynamic load of resonant water waves impinging on a
long but finite single or double array of bottom-mounted cylinders in a finite-depth
ocean can reach a multiple of that experienced by a single cylinder. This has obvious
consequences for offshore and harbour engineering. Resonances might even be the
reason for extraordinary high tsunami waves in an archipelago. The acoustic Parker
modes, cf. Parker (1966) or the review by Parker & Stoneman (1989), are related
to the above water wave resonances, and are well known for causing high sound
pressure levels in compressor blade rows or pipe bundles of heat exchangers. Such
acoustic resonances can also cause instabilities in aircraft engines (Cooper & Peake
2000; Vahdati et al. 2002), potentially leading to a greater susceptibility to fan blade
flutter and/or rotating stall.

The numerical computation of resonances in open systems is complicated by the
reflection of the leaky waves at the necessarily finite-grid boundaries. The PML
method of Bérenger (1994) allows a reduction of these leaky wave reflections to
extremely low values, and quickly became the method of choice also for other wave
propagation problems (Hu 2004). In the present paper, PML absorbing boundary
conditions are used to compute resonances numerically in open systems, mainly
for acoustic waves. Near such resonances, transients linger for many periods before
radiating out of the structure. This leads to a dramatic increase in time needed for
time-domain computations before the time-harmonic steady state is obtained. To reach
a deeper understanding of resonances in open resonators, and for a better feeling for
their direct numerical computation via PMLs, we introduce various model problems
of increasing complexity. At least some of these model problems are amenable to
analytic solution and allow a comparison with our computational results. The present
investigation is intended to prepare the ground for the computation of resonaces in
high lift devices where slat noise, together with the noise from flaps and landing gears,
is one of the major sources of airframe noise (Grosche, Schneider & Stiewitt 1997;
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Khorrami, Berkman & Choudhari 2000; Dobrzynski, Gehlhar & Buchholz 2001; or
Olson 2003 and the literature cited therein).

2. Perfectly matched layer absorbing boundary conditions
In order to model open system wave propagation problems numerically, the

computational domain is usually truncated and non-reflecting, transparent or
absorbing boundary conditions (ABC) are employed to avoid or reduce non-physical
reflections of outgoing waves at the finite-grid boundaries. Such reflections at the
numerical boundaries are often the source of significant errors in the numerical
computation, and a sizeable literature exists in this very active research area, cf. the
reviews by Ihlenburg (1998), Tam (1998), Tsynkov (1998), Turkel & Yefet (1998),
Givoli (1999) or Hu (2004). The PML technique proposed by Bérenger (1994) for the
finite-difference time-domain solution of electromagnetic wave propagation problems
provided a breakthrough in performance and quickly became the method of choice
in the computational electromagnetics community. Using a split-field formulation,
Bérenger enlarged the computational domain by artificial absorbing layers. The main
difference to other absorbing layer methods is that Bérenger constructed his PML
equations in such a way that the PML interface is theoretically reflectionless for
outgoing electromagnetic waves at any frequency and angle of incidence. When
implemented in discrete form, the matching is not perfect, but the results are still
significantly more accurate than those obtained with most other ABC.

Within a short time, alternative formulations of the PML method were proposed
using unsplit physical variables, cf. the anisotropic PML of Sacks et al. (1995), or
the complex coordinate stretching method of Chew & Weedon (1994), Chew, Jin &
Michielssen (1997). The PML method was extended to the frequency domain and was
also applied successfully in other fields, such as elastic wave propagation (Hastings,
Schneider & Broschat 1996; Schröder & Scott 2000), or computational aeroacoustics
(Hu 1996; Tam, Auriault & Cambuli 1998). For the linearized Euler equations, nu-
merical instabilities of earlier PML formulations were eliminated by Hu (2001, 2002),
providing perfectly matched boundary conditions also for vorticity and entropy waves.

The complex coordinate stretching PML formulation is strikingly similar to complex
scaling methods in the theory of quantum resonances. There the Aguilar–Balslev–
Combes–Simon theory (Aguilar & Combes 1971; Baslev & Combes 1971; Simon
1973) provides a powerful tool for the numerical computation of resonances in atomic
and molecular physics, as discussed in the monograph by Hislop & Sigal (1996), or
reviewed by Moiseyev (1998). It is somehow surprising that despite the similarities
there appears to be no cross-referencing between these two communities. In a closed-
region problem resonances are the real eigenvalues of a self-adjoint operator. In
an open-region problem resonances are either complex or real and embedded in the
continuous spectrum. In the case of real resonances, we speak of trapped modes. Non-
trapped resonance eigenfunctions grow exponentially in space, and consequently are
no longer in the L2 Hilbert space. According to the Aguilar–Balslev–Combes–Simon
theory, resonances can be defined and numerically computed as the eigenvalues of
a spectrally deformed operator, and the eigenfunctions of this spectrally deformed
operator are square integrable.

In acoustics, the propagation of small disturbances in a medium with zero mean
flow is governed by the wave equation. The propagation velocity c∗ is the speed of
sound. Here, and in the following, the star superscript marks dimensional quantities.
We formulate our problems in two-dimensional Cartesian coordinates (x∗, y∗) which
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are non-dimensionalized with a characteristic reference length l∗
ref. Furthermore, all

velocities are non-dimensionalized with a reference wave speed c∗
ref, densities with ρ∗

ref

and pressures with ρ∗
refc

∗
ref

2. The particular reference quantities will be listed for each
individual example. Assuming harmonic time dependence exp(−iω∗t∗), where ω∗ is
the circular frequency, the wave equation reduces to the non-dimensional Helmholtz
equation,

�φ + (K/c)2φ = 0, (2.1)

for the velocity potential φ(x, y). Here, K = ω∗l∗
ref/c

∗
ref is a non-dimensional frequency,

the so-called Helmholtz number. The time-independent dimensionless disturbance
velocity and pressure are then given by v(x, y) = ∇ φ and p(x, y) = iKρφ, respectively.

For two-dimensional Cartesian coordinates, the PML method works as follows:
in the PML domain we continue φ(x, y) analytically with respect to the variables
(x, y) ∈ IR2 to the complex variables (ξ, η) ∈ C2. The extended solution φ̃(ξ, η)
satisfies the same differential equation as φ:

∂2φ̃

∂ξ 2
(ξ, η) +

∂2φ̃

∂η2
(ξ, η) + (K/c)2φ̃(ξ, η) = 0. (2.2)

Now we choose some paths

ξ (x) = x + iσx(x), η(y) = y + iσy(y). (2.3)

The spatial variation of the damping functions σx(x) and σy(y) is usually chosen in
power form, smoothly starting at the PML interface at x = ± x0 in the x-direction,
or y = ± y0 in the y-direction, e.g.

σx(x) =




σx,0 (x − x0)
β, x > x0,

0, |x| � x0,

−σx,0 (−x − x0)
β, x < −x0,

(2.4)

σy(y) =




σy,0 (y − y0)
β, y > y0,

0, |y| � y0,

−σy,0 (−y − y0)
β, y < −y0,

(2.5)

with damping coefficients σx,0, σy,0 and a shape parameter β � 1. For comparison,
we show some of the complex scalings used in the theory of quantum resonances in
figure 1. The above scalings (2.4) and (2.5) correspond to the ordinary exterior scaling
in figure 1.

By the chain rule, the function φPML(x, y) := φ̃(ξ (x), η(y)) satisfies the elliptic
differential equation

1

ξ ′(x)

∂

∂x

(
1

ξ ′(x)

∂φPML

∂x

)
+

1

η′(y)

∂

∂y

(
1

η′(y)

∂φPML

∂y

)
+ (K/c)2φPML = 0, (2.6)

which involves an anisotropic damping tensor, compare also Turkel & Yefet (1998).
It can be seen that φ is outgoing if and only if φPML(x, y) decays exponentially as
|x| → ∞ and |y| → ∞. This suggests imposing homogeneous Dirichlet conditions at
some finite distances ±(x0 + dx) and ±(y0 + dy):

φPML(±(x0 + dx), y) = 0, φPML(x, ±(y0 + dy)) = 0. (2.7)

Here dx and dy are the widths of the PML in the x- and y-directions respectively, and
we arrive at a finite domain eigenvalue problem, which can be solved numerically by
standard codes.
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Figure 1. Complex scalings used in the theory of quantum resonances (cf. Karlsson 1998):
(a) ordinary complex scaling, (b) ordinary exterior scaling, (c) smooth exterior scaling (Taylor
form), (d) smooth exterior scaling (Woods–Saxon form).

3. Resonances in one-dimensional open systems
Before we proceed with the computation of resonances in two-dimensional open

systems, it is helpful to study resonances in one-dimensional model systems. One of
the simplest models is the acoustic resonances in a plane layer of finite thickness
l∗ with uniform ρ∗

1 , c
∗
1 embedded in an infinite medium with ρ∗

0 , c
∗
0. This problem is

amenable to analytical solution and gives us the rare opportunity to quantify the
influence of the various PML parameters by comparing our numerical solution with
the exact analytical result.

3.1. Acoustic resonances in a plane layer

The problem of acoustic resonances in a plane layer of finite-thickness l∗, as sketched
in figure 2(a), is closely related to the text book example of normal wave reflection
and transmission, cf. Brekhovskikh (1960) or Pierce (1981). l∗, ρ∗

1 and c∗
1 are chosen

as reference quantities. For one-dimensional acoustic disturbances in a medium with
c = cj , equation (2.1) reduces to

d2φ

dx2
+ (K/cj )

2φ =0. (3.1)

Here, K = ω∗l∗/c∗
1, and the time-independent dimensionless disturbance velocity in the

x-direction and the disturbance pressure are given by u(x) = dφ/dx and p(x) = iKρjφ,
respectively. Then the solution of (3.1) for the problem depicted in figure 2 can be
expressed in the form

φ(x) =




E0 exp(i(K/c0)x) + R0 exp(−i(K/c0)x), x � −1/2,

A1 exp(iKx) + B1 exp(−iKx), −1/2 <x <+1/2,

T0 exp(i(K/c0)x), x � +1/2.

Matching velocity and pressure at the interfaces x = ± 1/2, results in a system of
four equations for the four unknown wave amplitudes R0, A1, B1 and T0, with the
incoming wave amplitude E0 prescribed. The solution of this system of algebraic
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Figure 2. Wave reflection and transmission from a plane layer: modulus of amplitude
reflection factor |r | and amplitude transmission factor |t | as function of frequency f and
impedance parameter R.

equations gives the well-known amplitude reflection factor r (up to a phase shift)

r =
R0

E0

=
−i[R − R−1] sin K

2 cos K − i[R + R−1] sin K
, (3.2)

derived for example in Brekhovskikh (1960) or Pierce (1981). Figure 2 depicts the
modulus of the amplitude reflection and transmission factor (defined as the ratio of
amplitude of the reflected or transmitted wave to the amplitude of the incoming wave)
as a function of the non-dimensional (real) frequency f = K/(2π). The abbreviation
R =(ρ1c1)/(ρ0c0) denotes the ratio of the characteristic impedances.

For E0 = 0, a non-vanishing solution φ exists only if the determinant of the above-
discussed system of algebraic equations vanishes. This corresponds to finding the
roots of the denominator of (3.2), i.e.

K = Kn = nπ − i ln((R + 1)/(R − 1)) n= 1, 2, . . . . (3.3)

The (complex) frequencies fn = fn,r + ifn,i = Kn/(2π) are termed natural or resonant
frequencies of the finite-thickness layer, and the corresponding functions φn(x) are
called free, resonant, or quasi-normal modes. The real part of the resonant frequencies
fn, marked by circles in figure 2, coincides exactly with the zeros of |r |, corresponding
to |t | =1, i.e. where perfect transmission occurs. The imaginary part is the same for
all resonances and is always less than zero as a consequence of radiation losses. The
quality factor

Q =

∣∣∣∣ fr

2fi

∣∣∣∣ , (3.4)
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Figure 3. Single layer with perfectly matched layers located at ± x0.

is a measure for the resonator’s ability to store energy. From (3.3), we see that Q

increases with n.
Now that we have an analytical solution, we solve the same problem numerically

by placing perfectly matched layers of thickness dx at x = ±x0 as sketched in figure 3.
The solution is either symmetric or antisymmetric about x = 0. Therefore, we need
to solve only for x � 0 with the boundary condition φ(0) = 0 for antisymmetric, or
dφ/dx(0) = 0 for symmetric resonances. For the numerical discretization, we used a
multi-domain Chebyshev spectral collocation method in the x-direction, cf. Canuto
et al. (1988), with Nx,col collocation points in each domain. In the PML, equation (2.6)
reduces to

d2φPML

dx2
− ξ ′′(x)

ξ ′(x)

dφPML

dx
+ (ξ ′(x)K/cj )

2φPML = 0. (3.5)

Essentially, this is a Helmholtz equation with a complex wavenumber and a damping
term if ξ ′′(x) �= 0. At the end of the PML, we impose the Dirichlet boundary condition
φPML(x0 + dx) = 0. At the interface x = x0 between the PML and the regular domain,
the matching conditions are now dφ/dx =(dφPML/dx)/ξ ′ and ρφ = ρPMLφPML, i.e. the
velocity is discontinuous if ξ ′ �= 1 at x = x0.

After discretization, a generalized algebraic eigenvalue problem is obtained, which
can be solved by standard global eigenvalue solvers. Figure 4 shows a comparison of
the numerical spectrum with the analytical resonant frequencies (3.3). Owing to the
PML, the continuous spectrum is shifted towards the negative imaginary axis and
is clearly separated from the physically relevant resonances. The circles depict the
analytical resonances (3.3) which coincide quite well with the numerically computed
resonances. Also shown is a comparison of the numerical and analytical eigenfunction
of two resonant modes, corresponding to the two resonances marked by the solid
dots in the eigenvalue spectrum. We can see that the numerical solution is strongly
damped in the PML, and behaves like a standing wave within and like a travelling
wave outside the plane layer. The figure also demonstrates that the resonant modes
are damped in time but diverge exponentially in space, which in the past caused
mathematical as well as conceptual problems with regard to their physical meaning.

With the analytical solution (3.3) given explicitly, we can compute the relative
error as a function of the various PML parameters, as shown in figure 5 for the
fundamental eigenvalue n= 0. For the iterative computation of a single eigenvalue we
used the local Wieland iteration, cf. Zurmühl (1961, p. 289ff). We distinguish between
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Figure 4. Single-layer resonance: (a) spectrum of symmetric (×) and antisymmetric (+)
numerical eigenvalues together with the analytical resonances (3.3) marked by (�). R = 4,
Nx,col = 45, σx,0 = 5, x0 = 1.5, dx = 0.5, β = 1. (b) and (c) show the real (solid line) and imaginary
(dashed line) part of the first (b) and third (c) symmetric eigenfunction corresponding to the
eigenvalues marked by the solid dots in the spectrum. The real and imaginary parts of the
analytical eigenfunction are depicted by the symbols � and �, respectively.

the numerical discretization error in |x| � x0, and the error due to the finite thickness
and discretization in the PML. The numerical discretization error can be obtained
by imposing Dirichlet boundary conditions at x = ± 0.5, and is shown in all parts
of figure 5 by the line with solid circles. It can be seen that the relative error with
PMLs is always larger than the numerical discretization error as a consequence of
the numerical implementation of the finite-thickness PML. Therefore, increasing the
number of domains outside the PML does not improve the accuracy. However, the
accuracy can be improved considerably by increasing the number of domains within
the PML (or equivalently the number of points in the PML), as demonstrated by the
examples marked by solid symbols in figures 5(a) and 5(b). Around 10−12 rounding
errors limit the accuracy. Aside from the well-known trends that the accuracy can be
improved by either increasing the damping coefficient σx,0 or the PML thickness dx ,
see for example Qi & Geers (1998), we make the following observations:

(i) For given PML parameters and before reaching the rounding error limit, the
error curve levels off owing to reflections at the end of the PML and cannot be
improved by higher discretization. Quantitatively, this level is fixed by the value of
the damping function σx(x0 + dx) at the end of the PML.
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Figure 5. Single-layer resonance: relative error of fundamental eigenvalue n= 0 as a
function of Nx,col and various PML parameters. (a) Variation of damping coefficient σx,0

with dx =0.5, β =1, x0 = 1. (b) Variation of PML thickness dx with σx,0 = 5, β = 1, x0 = 1.
(c) Variation of shape parameter β with σx,0 = 5, dx = 0.5, x0 = 1. (d) Variation of distance
x0 with σx,0 = 5, β = 1, dx = 0.5. The line with solid circles in all plots gives the numerical
discretization error for the closed resonator with Dirichlet boundary conditions prescribed at
x =0.5. The filled circles and triangles in (a) and (b) represent the error after halving the PML
domain dx = 1 and keeping the same number of collocation points in each half, i.e. doubling
the points in the PML. The filled squares in (b) result if the first half of the PML is halved
again, resulting in three PML domains with the same number of collocation points in each
domain.

(ii) β = 1 gives the highest accuracy before reaching this levelling off, cf. figure 5(c).
This is surprising because most PML computations use a parabolic variation of the
damping function σx(x). In all our computations we use β = 1.

(iii) The error seems rather insensitive to the distance of the PML from the
resonating layer, cf. figure 5(d). The slightly higher error for larger x0 is probably
due to the slightly higher amplitude of the exponentially increasing outgoing wave at
larger x0.

In summary, using the analytical solution of the simple model problem, a numerical
error analysis has been performed demonstrating the influence of the various PML
parameters and providing a guide for their choice.

3.2. Fabry–Perot resonator

The one-dimensional acoustic resonator model for a single layer discussed above is so
simple that it is hard to believe that it has not been used before for PML parameter
studies. At least we are not aware of any such investigation. On the other hand, we
found a related and only slightly more complicated example in optics, namely the
Fabry–Perot resonator. The Fabry–Perot resonator consists of two parallel imperfect
mirrors separated by a cavity of width tC , cf. Fowles (1968) or Meyer & Pottel (1969).
In order to obtain a high value of reflectance (for example in lasers) each mirror is
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High index
λ/4 layer:
nH = 3.4

Low index
λ/4 layer:

nL = 1
y

tC tL tH

a a a r

x

Left mirror

PML

dx dx

PML

Right mirror

Figure 6. Fabry–Perot resonator with perfectly matched layers, cf. Hyun et al. (1997).

made up of a stack of alternate layers of high refractive index, nH , and low refractive
index, nL, materials, the thickness of each layer being 1/4 wavelength. Here the index
of refraction n is defined as the ratio of the speed of light in vacuum c∗

∞ to its speed
in the medium, and we use c∗

ref = c∗
∞ as reference wave speed in this example.

Using the finite-element method and the anisotropic PML boundary condition,
Hyun et al. (1997)† investigated such a Fabry–Perot resonator, see figure 6, as a
one-dimensional model for a truncated photonic crystal. We shall use the example of
Hyun et al. (1997), in which the high-index layer has a refractive index nH = 3.4 and a
thickness tH = a/(nH + 1). The low-index layer has a thickness tL = anH/(nH + 1) and
a low refractive index nL = 1 (air). The central cavity has a width tC = 2tL. The scaling
factor a denotes the thickness of a pair of layers, i.e. tL + tH = a, and, following Hyun
et al. (1997), has been set equal to 1, i.e. a∗ is now taken as reference length l∗

ref. The
spacing r between the Fabry–Perot mirror and the PML is taken to be 2tL.

This electrodynamic problem is governed by Maxwell’s equations, but can be
reduced to the Helmholtz equation, (3.1), if we substitute Ey for φ and nj for 1/cj .
Here, Ey is the y-component of the electric field vector with all other components
being zero. The Helmholtz number for the electrodynamical problem is now defined
as K = ω∗a∗/c∗

∞. The only non-zero component of the magnetic field is Hz (transverse
magnetic mode). At the interface between two media with different index of refraction
n, the tangential components of the electric and magnetic field are continuous, i.e.
Ey and Hz are continuous. For non-magnetic media, the continuity of Hz implies the
continuity of dEy/dx. With these interface conditions, the above described Fabry–
Perot resonator problem can be solved analytically as well as numerically using PMLs,
and constitutes a simple model for resonances in a multi-layer system.

Figure 7 shows the spectra and sample resonance functions for mirrors with one
and three high-index layers. Here the reduced frequency f is defined by

f = ω∗t∗
L/(c∗

∞π) = KtL/π. (3.6)

The numerical spectra show again a clear separation of the resonances from the
rotated discretized continuous spectrum near the imaginary axis. Hyun et al. (1997)

† We are grateful to Jeong-Ki Hwang for providing us with additional information.
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Figure 7. Fabry–Perot resonator: spectra and resonant functions for mirrors with one
(a, b) and three (c–f ) high-index layers. Nx,col = 45, σx,0 = 5, β = 1, r = dx = 2tL. (a) and
(c) are the spectra for the symmetric eigenfunctions while (e) shows antisymmetric eigenvalues.
The circles in (a) mark the analytical resonances for comparison. The real and imaginary
parts of the analytical resonance function Ey in (b), corresponding to the fundamental mode
marked by the solid dot in (a), are again depicted by the symbols � and �, respectively,
while the numerical results are given by the solid and dashed curve, respectively. (d) shows the
symmetric fundamental eigenfunction Ey corresponding to the mode marked by the solid dot
in (c), while (f ) shows the antisymmetric eigenfunction Ey belonging to the mode marked by
the solid dot in (e).

solved the problem depicted in figure 7(d) where the mirrors consist of three high-index
layers. We can see that with an increasing number of mirror layers, the number of
resonances increases and the imaginary part of f decreases, implying lower radiation
losses and higher reflectance.

For a better understanding of the various resonances, we varied the cavity length tC
and computed each eigenvalue iteratively via Wielandt iteration, starting with the case
tC =2tL of Hyun et al. (1997). The corresponding results for the symmetric resonant
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Figure 8. Fabry–Perot resonator: (a) variation of resonant frequencies with cavity length tC
and (b) corresponding Q factor. Modulus of amplitude transmission factor |t | for (e) tC = tL,
(d) tC = 2tL, and (c) tC = 8.

frequencies 0 < Re(f ) < 1 of figure 7(c) are reshown in figure 8(a, b). We see that
only the mode marked by the solid dot in figure 7(c), and at tC = 2tL in figure 8(a),
gives a higher Q factor. If tC is increased, higher resonant modes show maxima
of the Q factor at Re(f ) = 0.5, and the Q factor is much higher than that for the
fundamental mode. Similar results are obtainend at Re(f ) = 1.5, etc. To demonstrate
the reason behind this behaviour, we computed the amplitude transmission factor for
three different tC , and depicted the modulus of the amplitude transmission factor |t | in
figures 8(c), 8(d) and 8(e). We obtained these amplitude transmission (and reflection)
factors simply by solving the system of interface conditions at the various interfaces
between high- and low-index layers (transmission matrix approach).
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Figure 8(e) shows the amplitude transmission factor for tC = tL, i.e. for exactly five
periodic low-index layers between six high-index layers. This is essentially a truncated
one-dimensional photonic crystal, and we observe stopbands with zero transmission
around f = (n + 1)/2, n= 0, 1, . . . (such frequency regions are called photonic
bandgaps analogous to electronic bandgaps in semiconductors), and passbands around
f = n, n = 0, 1, . . . . The many peaks in the passbands of the transmission factor of
figure 8(e) are exactly the resonant frequencies marked by triangles in figure 8(a) (the
unmarked peaks in between are those from the antisymmetric resonances).

If we introduce a ‘defect’ into the photonic crystal by adding a cavity with tC �= tL,
the band structure essentially remains, but some of the resonant modes move into the
stopband (so-called defect modes) with extremely sharp resonances corresponding to
high Q factors. In figure 8(d) for tC = 2tL, the case treated by Hyun et al. (1997), we see
that one resonance is exactly in the middle of the stopbands. The crosses (and the solid
circle for the f = 0.5 resonance) in figure 8(d) correspond exactly to the symmetric
resonances up to Re(f ) = 1.5, marked by crosses in figures 7(c) and 8(a). The open
circles in figure 8(d) correspond to the antisymmetric resonances, marked by crosses
and the solid circle in figure 7(e). Finally, in figure 8(c) for tC = 8, several resonances
moved into the stopband, and the symmetric resonances, marked by circles in figure
8(a), are also marked by circles in figure 8(c). Qualitatively similar results have been
found for geometrically more complex two-dimensional Fabry–Perot structures using
a boundary integral formulation or scattering matrix theory (Venakides, Haider &
Papanicolaou 2000; Kriegsmann 2003). In these papers, the photonic crystal mirrors
are built up by parallel columns of circular dielectric rods instead of the parallel
dielectric layers of figure 6.

Summarizing, we can say that for multi-layer one-dimensional systems, more or
less distinct bandgaps occur in the transmission factor, and of the many resonances
only those in the bandgaps (the defect modes) have high Q factors and will be of
physical interest.

4. Resonances in two-dimensional laterally periodic open systems
By adding lateral periodicity to our one-dimensional model of § 3.1, a second length

d∗ is introduced in addition to l∗. Important examples of laterally periodic open
resonators are structures in a waveguide, or periodic structures like blade cascades,
diffraction gratings or antennas. Some sample rectangular structures in a waveguide
are shown in figure 9.

For waveguide problems it is customary to choose l∗
ref = d∗ as reference length.

At higher frequencies, more than one duct mode is cut-on, i.e. propagating. This
means that multi-modal scattering is possible for these problems, with more than one
reflected and transmitted wave, contrary to the examples of § 3. All structures depicted
in figure 9 display symmetries. This is not necessary, but simplifies the computation.
Although these models are highly idealized, the general solution method might have
direct application in the technology of sintering ceramic materials by means of
microwave energy, see for example Hile & Kriegsmann (1998).

4.1. Resonances in a laterally bounded layer

In this section, we concentrate on the model shown in figure 9(a). In the shaded layer,
we prescribe a higher density ρ∗

1 than in the surrounding fluid with ρ∗
0 , but assume

that the wave speed c∗
1 = c∗

0 is the same. This problem is amenable to straightforward
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Figure 9. Various examples of rectangular structures in a waveguide. The shaded areas
either mark materials with a different density and/or refraction index, or are solid bodies.

solution via separation of variables. The reference quantities are taken to be ρ∗
0 , c

∗
0 and

d∗, such that K =ω∗d∗/c∗
0 and f = K/2π. For sound-hard duct walls ∂φ/∂y(± 0.5) = 0

we can split the solution into resonances symmetric and antisymmetric about the x-
axis. The separation of variables solution of (2.1) for y-symmetric resonances with
c =1 and d = 1 is then of the form

φ(x, y) =C± exp(±i
√

K2 − (2mπ)2x) cos(2mπy), m =0, 1, 2, . . . . (4.1)

Here the square root is defined uniquely by introducing a branch cut along the negative
real axis and defining

√
−x = i

√
x, x > 0 on the branch cut. Matching x velocity and

pressure across the interface, together with satisfying the radiation condition, we
obtain the analytical y-symmetric resonances

Kn,m =
√

(Kn/l)2 + (2mπ)2, n= 1, 2, . . . , m= 0, 1, 2, . . . , (4.2)

where Kn is given by (3.3). Each resonant mode may be characterized by two integers
(n, m) specifying the number of nodal lines of the pressure in the x- and y-directions,
respectively. For l/d ≡ l = 2 these analytical resonances are depicted in figure 10(a).
For m =0 (and setting l = 1 in (4.2) because we used l∗ as reference length there) the
one-dimensional resonances (3.3) are recovered. We observe that all two-dimensional
resonances are less damped than the one-dimensional ones, and for fixed m �= 0 the
resonances with n= 1 are least damped.

For the numerical computation of the resonances we use a two-dimensional multi-
domain Chebyshev collocation method with Nx,col and Ny,col collocation points in
the x- and y-directions, respectively for each domain. The resonances can again be
separated into resonances symmetric and antisymmetric about the y-axis, so that we
have to solve only for x � 0, y � 0. A one-dimensional PML, starting at x0, is sufficient
to damp the outgoing waves, and the PML equation (2.6) reduces to

∂2φPML

∂2x2
+ ξ ′2(x)

∂2φPML

∂2y2
− ξ ′′(x)

ξ ′(x)

∂φPML

∂x
+ (ξ ′(x)K/cj )

2φPML = 0. (4.3)
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Figure 10. Single-layer y-symmetric resonances in a waveguide: ρ1/ρ0 = 4 and l/d = 2.
(a) Analytical spectrum: the one-dimensional resonances m= 0 of figure 4 are marked by
circles. (b) Comparison of analytical spectrum (×) with the y-symmetric x-symmetric (�) or
y-symmetric x-antisymmetric (�) numerical resonances: Nx,col = Ny,col = 30, σx,0 = 5, x0 = 2.5,
dx = 0.5, β = 1.

Figure 10(b) shows a comparison of the numerically obtained y-symmetric resonances
with the corresponding analytical results (4.2). In addition to the numerical
approximation of the continuous spectrum originating at f =0 we now obtain a
continuous spectrum for each symmetrical cut-on mode at Re(f ) = 1, 2, . . . As can
be seen, the numerical resonances agree quite well with the analytical results for low
values (n, m). Similar results are obtained for the y-antisymmetric resonances with
cut-on frequencies at Re(f ) = 0.5, 1.5, . . . .

The analytical results (4.2) can again be used to compute the relative error. The res-
ults are qualitatively (and even quantitatively) close to the one-dimensional results of
figure 5. We therefore suspect that the optimal PML depth found by Hyun et al. (1997),
who used a periodic boundary condition in their two-dimensional finite-element
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code in order to obtain the one-dimensional result, might be an artefact of their
numerical solution. Some of the other structures depicted in figure 9 might be of
interest for electromagnetic waves. However, in the following section we concentrate
on acoustic problems, where the shaded structures in figure 9 are hard-walled bodies.

4.2. Parker mode resonances

In many applications, wakes behind bodies, such as turbomachinery blades, guide
vanes, supporting struts, etc., act as time-periodic sources which can excite resonances
in open flow systems. Parker and his collaborators were the first to demonstrate
that in many cases these resonances are of a purely acoustic nature and may lead
to serious vibrations and/or unacceptably high noise levels (Parker 1966; Parker
1967), or the survey paper (Parker & Stoneman 1989). They showed that mechanical
vibrations of the wake-shedding body play no direct role in these problems, i.e.
the resonant frequencies and corresponding resonant modes depend only on the
geometrical boundary of the open configuration, but are independent of the material
properties of the wake-shedding body. Similar resonances were observed for water
waves, cf. Maniar & Newman (1997) or Evans & Porter (1997), and quantum
waveguides, see for example Exner et al. (1996). The publications by Ursell (1987)
and Evans, Levitin & Vassiliev (1994) provide the mathematical background and cite
relevant older literature.

Practically all publications up to now were only concerned with so-called trapped
modes, also termed bound states in other fields. These are localized oscillations at
discrete frequencies having finite energy. Trapped modes are closely related to the
non-uniqueness of the forced-motion problem, and therefore attracted considerable
attention, see for example Evans & Linton (1991) and Callan, Linton & Evans (1991).
Neglecting dissipation, they persist for all time in the absence of external forcing, i.e.
they are undamped and no energy is radiated to infinity. As a consequence, trapped
modes decay towards infinity, which is the reason why the numerical computation
of Parker (1967) on a finite-sized grid worked. Contrary to these trapped modes,
resonant modes are damped due to radiation losses, and are therefore often termed
leaky modes. Nevertheless, these leaky modes are at least equally important, as can be
seen in figure 1(a) of Maniar & Newman (1997), where these leaky modes cause even
higher loads than the trapped mode. Trapped modes are just very special resonant
modes.

In the following, we start with the classical Parker-mode problem, i.e. a finite-length
plate of length l and zero thickness placed symmetrically in a channel, cf. figure 9b.
On the plate, the normal velocity has to vanish, i.e. ∂φ/∂y(x, 0) = 0, −l/2 � x � + l/2.
On the channel walls either Neumann boundary conditions ∂φ/∂y(x, ± 0.5) = 0
(Neumann problem) or Dirichlet boundary conditions φ(x, ± 0.5) = 0 (Dirichlet
problem) are applied. Contrary to the model problem of § 4.1, no exact solution
is known for the Parker-mode problem. However, several approximate solutions,
obtained by various methods, have been published, such as Franklin (1972), who
used a variational formulation, Nayfeh & Huddleston (1979) and Evans & Linton
(1994), who applied the mode matching technique, or Koch (1983), Evans & Linton
(1991) and Woodley & Peake (1999), who used the Wiener–Hopf method. The
approximation usually consists of truncating an homogeneous infinite system of
linear algebraic equations, and in many cases low truncations give very accurate
results.

In our purely numerical approach, we apply the PML method as described in the
previous section and take advantage of the symmetries. Figure 11 shows the spectrum
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Figure 11. Parker mode resonances for the Neumann problem with l/d =1.8. Nx,col =
Ny,col = 30, σx,0 = 5, dx =0.5, β = 1. �, x-symmetric; �, x-antisymmetric resonances. The top
pictures show three examples of resonant eigenfunctions Re(φ), computed with the higher
resolution Nx,col =Ny,col = 40 and the PML starting at x0 = 2.

for the Neumann problem, where we separated the x-symmetric modes (marked by
open circles) from the x-antisymmetric modes (marked by open triangles). The shaded
area indicates the region of the hitherto treated trapped Neumann modes – in this
example, Parker’s classical α and β mode. In addition to the resonant modes, our
numerical result also contains an approximation to the continuous spectra of the
cut-on modes beginning at Re(f ) = 0.5, 1.5, . . . . However, these can be separated
fairly easily from the resonant modes in between. While the two trapped modes are
(theoretically) undamped, we see that only a few weakly damped resonant modes
exist, i.e. with Im(f ) 
 1. Only these weakly damped modes have a Q factor high
enough to be of physical importance. In the top pictures of figure 11, three resonant
eigenfunctions are depicted, including Parker’s α mode (1, 0). Again, all modes can
be ordered by two integers (n, m) corresponding to the number of nodal lines in the
x- and y-directions.

Similarly, figure 12 shows the corresponding spectrum for the Dirichlet problem.
Now the continuous spectra start at Re(f ) = 1, 2, . . . , and we distinguish again
between x-symmetric (filled circles) and x-antisymmetric (filled triangles) modes. The
shaded trapped-mode domain now contains three modes, including Parker’s γ and
δ mode. From figures 11 and 12, it appears that all higher-order weakly damped
resonant modes are laser-like (0, m) transversal modes.
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Figure 12. Parker mode resonances for the Dirichlet problem with l/d = 1.8. Nx,col =
Ny,col = 30, σx,0 = 5, dx = 0.5, β = 1. �, x-symmetric; �, x-antisymmetric resonances. The top
pictures show three examples of resonant eigenfunctions Re(φ), computed with the higher
resolution Nx,col = Ny,col = 40 and the PML starting at x0 = 2.

Using the results at l/d = 1.8 as initial values we can vary l/d and compute the
corresponding resonances iteratively via Wielandt iteration. This way we obtain the
extended Parker mode diagram depicted in figure 13 for 0 � l/d � 4 and 0 � Re(f ) � 2.
The real parts of the resonances in figures 11 and 12 are reshown as open and filled
circles and triangles in figure 13. Also included are the experimental data points of
Parker (1966). As far as we know, only results for the trapped Parker modes in the
shaded region have been published up to now, see for example Koch (1983) or Evans
& Linton (1994).

Analogous resonances are found in cylindrical geometries. For example Linton &
McIver (1993) computed the trapped modes in circular cylindrical waveguides with
radial fins. Using the above PML approach, we can also compute the corresponding
leaky-mode resonances. Arnold, Holste & Rose (2003) demonstrated that these leaky
modes are of practical importance in indoor testing of jet engines. There, the leaky-
mode resonances are excited by the vortices shed from Pitot tubes in the bellmouth
intake of a jet engine during indoor test runs, resulting in high-amplitude discrete
noise which is not present in the flight configuration.

In a similar fashion, the resonances can be computed for more complicated
structures such as those depicted in figure 9. We demonstrate this for three
representative examples. First, we consider the Parker mode problem with the plate
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Figure 13. Extended Parker mode diagram: resonant frequencies Re(f ) as function of l/d
computed with Nx,col = Ny,col = 15, σx,0 = 5, dx = 0.5, β = 1. The stars mark the experimental
results for the original α, β, γ and δ mode of Parker (1966). The open circles and triangles at
l/d = 1.8 are the x-symmetric and x-antisymmetric Neumann problem resonances of figure 11.
The filled circles and triangles are the x-symmetric and x-antisymmetric Dirichlet problem
resonances of figure 12.

offset from the centreline of the duct (figure 9c). Evans & Linton (1994) and Evans,
Linton & Ursell (1993) published the corresponding trapped mode frequencies for
the Neumann problem, and Davies & Parnovski (1998) proved that for an offset
plate there always exists at least one trapped mode. For general off-centre structures
in a channel with Neumann or Dirichlet boundary conditions on the channel walls,
the trapped mode frequencies were examined recently by Linton et al. (2002). The
transition from a real trapped mode to a complex resonant mode for an arbitrary
off-centre obstacle was discussed by Aslanyan, Parnovski & Vassiliev (2000) from a
more theoretical point of view. Here we solve the problem numerically by means
of the PML method. The off-centre Parker mode problem is no longer symmetric
about the x-axis, but we can still make use of the symmetry and antisymmetry
about x = 0. For l/d = 1.8 and c/d = 0.25 the corresponding resonant frequencies
are shown in figure 14. The shaded domain marks the region of trapped modes
treated in Evans & Linton (1994), and the first two resonant frequencies correspond
to the symmetric and antisymmetric trapped modes of their figure 3 for l/d =1.8.
The continuous spectra start at the cut-on frequencies Re(f ) = 0.5, 1.0, 1.5, . . . , i.e.
the trapped modes exist only at frequencies below the first cut-on frequency. The
pictures at the top of figure 14 show the eigenfunctions Re(φ) of three resonant
modes, including the antisymmetric trapped mode corresponding to the mode (1, 0)
in figure 11. We note that, with the exception of the antisymmetric trapped mode,
the least damped resonant modes are mostly transversal modes with nodal lines
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Figure 14. Parker mode resonances for the Neumann problem with an offset plate l/d =
1.8, c/d = 0.25 corresponding to the example in Evans & Linton (1994). Nx,col = Ny,col = 25,
σx,0 = 5, x0 = 2, dx =0.5, β = 1. �, x-symmetric; �, x-antisymmetric resonances. The top pictures
show three examples of resonant eigenfunctions Re(φ).

parallel to the x-direction. Similarly, we can compute the resonant frequencies for the
Dirichlet problem, extending the trapped mode results of figures 3 and 4 in Linton
et al. (2002).

Next, we consider a thick plate of thickness b placed symmetrically in the centre
of the channel (figure 9d). The trapped modes for the Neumann problem have been
computed by Evans & Linton (1991) for 0 � l/d � 6 and four values of b/d . For
a long rectangle, Khallaf, Parnovski & Vassiliev (2000) provided analytic estimates
for the trapped mode frequencies, and the branch structure of the trapped modes
was investigated by McIver, Linton & Zhang (2002). Figure 15, computed via the
PML method, shows also higher-order resonant modes in addition to the trapped
modes for l/d = 1.8 and b/d = 0.5. The two resonant frequencies in the shaded region
correspond to the symmetric and antisymmetric trapped mode of figure 5 in Evans &
Linton (1991). The left-hand picture at the top of figure 15 portrays the eigenfunction
corresponding to the antisymmetric trapped mode of Evans & Linton (1991). The
other two pictures at the top are examples of weakly damped symmetric resonant
eigenfunctions. The continuous spectra start at Re(f ) = 0.5, 1.5, . . . . In this example,
the resonant frequencies appear in groups with the same number of nodal lines
parallel to the x-axis and an increasing number of nodal lines parallel to the y-axis.
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Figure 15. Resonances for the Neumann problem of a centred rectangular cylinder with
l/d = 1.8 and b/d = 0.5. Nx,col =Ny,col = 30, σx,0 = 5, x0 = 2, dx = 0.5, β = 1. �, x-symmetric;
�, x-antisymmetric resonances. The top pictures show three examples of resonant eigen-
functions Re(φ).

A similar computation for the Dirichlet problem does not seem to give any trapped
mode, and the resonant modes appear to be highly damped.

Resonances occur also for multi-body structures in a channel. Therefore, as a last
example we consider the special case of two plates of zero thickness on the centreline
of the channel placed symmetrically about x = 0 with a gap in between (figure 9e).
Trapped modes with (non-symmetrical) tandem plates in a duct were investigated
by Stoneman et al. (1988), and are of importance in turbomachines (Woodley &
Peake 1999). For cylinders instead of plates along the centreline of the channel,
Evans & Porter (1997) showed that in general there are as many trapped modes as
there are cylinders. Aligning equally spaced cylinders across the channel, Utsunomiya
& Taylor (1999) came to the same conclusion as far as the number of trapped
modes is concerned. Porter & Evans (1999) and Linton & McIver (2002) pointed
out the close connection of the Neumann and Dirichlet trapped modes in a channel
to Rayleigh–Bloch surface waves along infinite periodic structures. Rayleigh–Bloch
surface waves propagate along a periodic structure, but decay exponentially away
from the structure. In the context of water waves, Rayleigh–Bloch waves correspond
to edge waves travelling along a periodic coastline and decaying exponentially out
to sea (Evans & Linton 1993; Evans & Fernyhough 1995). Analogous surface waves
can be observed also along electromagnetic gratings.



276 S. Hein, T. Hohage and W. Koch

x/d

y
—
d

–2 –1 0 1 2

0.4

0.2

0

–0.2

–0.4

0 1 2 43 5
–0.05

–0.04

–0.03

–0.02

–0.01

0

Im
(f

)

Re( f )

x/d
–2 –1 0 1 2

0.4

0.2

0

–0.2

–0.4

x/d
–2 –1 0 1 2

0.4

0.2

0

–0.2

–0.4

.

Figure 16. Resonances for the Neumann problem of two centred plates of length l/d = 0.5
separated by a gap of width c/d = 0.8. Nx,col = Ny,col = 30, σx,0 = 5, x0 = 2, dx = 1.0, β = 1.
�, x-symmetric; �, x-antisymmetric resonances. The top pictures show three examples of
resonant eigenfunctions Re(φ).

Returning to our two-plate problem, figure 16 shows the resonant frequencies for the
Neumann problem with a plate length l/d = 0.5 and a gap c/d = 0.8 in between. There
are two trapped modes below the first cut-on frequency of the channel. It is of interest
to note that, with dx = 0.5, the antisymmetric trapped mode was slightly unstable, i.e.
it had a small positive imaginary part, which is impossible. Increasing the number of
collocation points, or doubling the number of domains did not change this. However,
when we doubled the PML thickness to dx = 1.0, the trapped mode frequency was
damped and almost real. This shows that the influence of the PML parameters, as
outlined in figure 5, is of prime importance for improving numerical results. The
three pictures at the top of figure 16 show again the resonant eigenfunctions of three
modes, including the antisymmetric trapped mode, corresponding to Parker’s α mode.
The symmetrical trapped mode looks similar to the mode shown by Stoneman et al.
(1988) in their figure 7, and is the one mainly excited in the presence of flow.

In summary, two-dimensional open problems with lateral periodicity still require
only a one-dimensional PML, but allow multiple scattering at higher frequencies.
As a consequence, several continuous spectra occur which are approximated by the
numerical PML solution in addition to the resonances. However, owing to different
radiation damping and contrary to closed system resonators, not all resonances are of
equal importance. Trapped modes are of special interest, but it should be emphasized
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Figure 17. Two-dimensional model problem of a rectangular fluid domain with density ρ∗
1

which differs from the density ρ∗
0 in the surrounding fluid. The perfectly matched layers of

thickness dx and dy are located at +x0 and +y0.

that our numerical method cannot distinguish exactly between a genuine trapped
mode and a weakly damped leaky mode. At higher frequencies resonant transversal
modes with nodal lines parallel to the x-axis appear to be the least damped.

5. Resonances in two-dimensional open systems
5.1. Resonances in a rectangular slab with different fluid density

In this final section, the channel walls will be removed and resonances will be
computed for completely open two-dimensional structures. For our model problem,
this means that we have a rectangular domain of length l∗ and width b∗ containing
fluid with different density ρ∗

1 embedded in an infinite fluid with density ρ∗
0 . The speed

of sound is assumed to be everywhere c∗
0, i.e. c∗

1 = c∗
0. In this case b∗, ρ∗

0 and c∗
0 are

chosen as reference quantities, such that the dimensionless frequency is defined by
K = ω∗b∗/c∗

0 and f = K/2π.
To eliminate reflected waves in our Cartesian coordinate system, we have to

introduce PMLs now in the x- and y-directions, as shown by Hu (2004) and outlined
in § 2. Owing to symmetries, only the quarter-plane problem, sketched in figure 17,
needs to be solved with corresponding symmetry and antisymmetry conditions at the
x- and y-axes. The two-dimensional PML equation, (2.6), has to be applied only in the
corner region x0 � x � (x0 + dx) and y0 � y � (y0 + dy). In the remaining PML regions,
one-dimensional PML equations such as (4.3) suffice. In the following, we show only
the y-symmetric resonant modes with prescribed Neumann condition ∂φ/∂y = 0 at
y = 0.

Figure 18 shows the spectrum for y-symmetric resonances. Again, each resonant
mode can be characterized by two integers (n, m) specifying the number of nodal
pressure lines in x- and y-directions, respectively. This is analogous to a closed
resonator where a Dirichlet or Neumann condition is prescribed at the slab boundary.
For open resonators the radiation condion has to be imposed resulting in complex
resonant frequencies. We observe that the m =const. modes lie along lines starting at
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Figure 18. y-Symmetric resonances in a rectangular fluid slab with l/b = 2 and ρ1/ρ0 = 4.
Nx,col = Ny,col =30, σx,0 = σy,0 = 5, x0 = 2, y0 = 1.5, dx = dy =1.0, β =1. �, x-symmetric; �, x-
antisymmetric resonances. The top pictures show three examples of resonant eigenfunctions
Re(φ).

the cut-on frequencies, and the imaginary part of the frequency approaches a unique
limit as n → ∞, which appears to be close to the one-dimensional result of figure 4.
Different from the waveguide problem, depicted in figure 10, here the longitudinal
m =0 modes are the least damped. The upper three pictures show the resonant
eigenfunctions of the fundamental mode and an x-antisymmetric and x-symmetric
higher-order mode.

Similarly, the y-antisymmetric resonances can be computed by imposing a Dirichlet
condition along y = 0. The corresponding resonances for the m =1, 3, 5, . . . modes
lie in figure 18 in between the y-symmetric mode bands m =0, 2, 4, . . . , but are not
shown.

5.2. Gap tone resonances

To investigate possible tone generation mechanisms associated with the flow through
the gaps of a high-lift system, Tam & Pastouchenko (2001) formulated a generic
two-dimensional wall jet model for the slat or flap gap exit. Assuming an infinitely
thin trailing edge, they solved the model problem using computational aeroacoustics
(CAA) methods. They discovered a feedback mechanism for the transverse gap modes
and derived a simple prediction formula for the gap tone frequencies. Agarwal &
Morris (2002) extended these ideas by including the sound source characteristics.
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Figure 19. Two-dimensional gap tone model for zero mean flow with perfectly
matched layers.

For this, they computed the slat wake-shedding frequency as a function of slat
trailing-edge bluntness and finite thickness of the slat boundary layers by means of
the absolute–convective stability analysis of Koch (1985) and Chomaz, Huerre &
Redekopp (1991). If the frequency of the source matches one of the gap’s normal
modes, a high-amplitude tonal noise would be produced. This is analogous to the
mechanism exciting the Parker modes. The transverse gap tone modes obviously
constitute only part of the resonances if the plate has finite length. In the present
paper, we compute the resonances in such a finite-length problem. While mean flow
is important for the sound-generating trailing-edge vortices, it plays only a minor
role for the resonances at low Mach numbers, as can be seen from the Parker mode
results of Koch (1983). Therefore, in the following, we compute only the resonances
of the zero mean flow model depicted in figure 19.

The no-flow gap tone model of figure 19 consists of an infinitely thin sound
hard plate of finite length l located a distance h above a hard wall. Symmetry or
antisymmetry about the x = 0 axis can be assumed for zero mean flow. Adding another
mirror image plate below the hard wall and assuming symmetry or antisymmetry also
about the y = 0 axis defines a classical two-dimensional laser cavity (Weinstein 1969).
Owing to the symmetries, only the quarter-wave problem need be considered. In laser
applications, the wavelength is usually much smaller than any characteristic length
of the system. For these applications, the approximate methods employed for their
computation, such as geometrical optics or the (asymptotic) method of the parabolic
equation, are very accurate for the high-Q modes. Contrary to this we are interested
in the case where the wavelength is comparable to the characteristic length of the
system, and the perfectly matched layer method used in § 5.1 appears well suited for
achieving this goal.

Prescribing a Neumann condition ∂φ/∂y =0 for the velocity potential at y = 0,
figure 20 shows our results for x-symmetric and x-antisymmetric resonances. For
this application we chose the ‘cavity’ depth 2h∗, i.e. twice the gap height h∗, as
reference length, such that the dimensionless frequency is defined by K = ω∗2h∗/c∗

0

and f =K/2π. The computed frequency spectrum looks very similar to the spectrum
sketched in figure 14 of Weinstein (1969), and clearly demonstrates that only a
few modes exhibit high Q factors. It turns out that for zero mean flow, these
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Figure 20. Gap tone resonances for l/h = 8 with Nx,col = Ny,col = 30, σx,0 = σy,0 = 5, x0 = 3,
y0 = 1.5, dx = dy = 1.0, β = 1. �, x-symmetric; �, x-antisymmetric y-symmetric gap tone
resonances. �, x-symmetric; �, x-antisymmetric y-antisymmetric laser mode resonances. The
top pictures show three examples of weakly damped resonant gap tone eigenfunctions Re(φ).

high-Q resonant modes are exactly the transverse gap tone modes of Tam &
Pastouchenko (2001). All longitudinal resonant modes have higher radiation losses
than the transverse resonant modes. The upper pictures in figure 20 show examples
of resonant eigenfunctions, namely the eigenfunctions of the fundamental resonant
mode and two transverse resonant modes. The upper right eigenfunction already
looks very similar to the pattern of standing waves between two-dimensional plane
parallel mirrors shown in figure 9 of Weinstein (1969). The latter figure was drawn
from a photograph of Bykov (1964) who used waves on the surface of mercury to
model experimentally oscillations in a two-dimensional open resonator. Naturally, for
the laser cavity problem, we also have to consider the y-antisymmetric modes with
φ = 0 at y = 0. These y-antisymmetric resonances start at Re(f ) = 0.5, 1.5, . . . and are
shown by the filled symbols in figure 20.

6. Conclusion
In the present paper we computed resonances numerically for several open

resonators of rectangular geometry by means of a multi-domain spectral collocation
method together with PML absorbing boundary conditions. A numerical error
analysis, performed for a one-dimensional model problem, which is amenable to
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analytic solution, served to demonstrate the influence of the various PML parameters
and guided us in choosing these parameters. The obtained results show that the
applied complex scaling formulation of the PML method, customary in atomic and
molecular physics, is robust and well suited to separate the discrete resonances
from the continuous spectrum. In the numerical solution, the latter showed up in
discretized form also, but could be discerned easily. A disadvantage of absorbing
boundary conditions are the additional computational points in the PML which are
physically irrelevant, but are needed to damp the outgoing waves to such a low level
that the waves reflected from the outer end of the PML can be neglected. Applying
the PML method to a Fabry–Perot cavity, we demonstrated the effect of defects in a
one-dimensional bandpass structure.

For open structures in a two-dimensional waveguide, only one-dimensional PMLs
are necessary to obtain a solution of the two-dimensional Helmholtz equation
satisfying the radiation condition. For each cut-on duct mode, a continuous spectrum
appears; but, in general, the resonances can be separated quite well from these
continuous spectra. We reconsidered the Parker mode problem and were able to
compute, in our opinion for the first time, leaky Parker modes in addition to the
classical trapped Parker modes. In applications, such leaky modes are often more
important than trapped modes, cf. the water wave example of Maniar & Newman
(1997). Several generalizations of the Parker mode problem were treated, such as an
offset plate, a thick plate, or tandem plates. In all these problems, only few resonances
are weakly damped and therefore have a high Q factor. We observed that most of
these weakly damped resonances are transversal resonant modes.

Finally, we considered resonances in completely open two-dimensional structures.
For our rectangular domains, PMLs had to be applied in both coordinate directions.
Of particular interest was the gap noise model problem of Tam & Pastouchenko
(2001). It turned out that for zero mean flow, the high-Q resonant modes are exactly
the transverse gap tone modes of Tam & Pastouchenko (2001). In general, we can
state that, contrary to resonances in closed systems, only few resonances are weakly
damped in open systems and hence are of physical relevance. This is well known in
the design of laser cavities, (Weinstein 1969). Therefore, it will be of great interest to
compute the resonances for a realistic slat geometry of a high lift configuration and
determine the resonances of importance. If these resonances are near any self-excited
shear-layer frequency one can expect high noise levels and enhanced airframe noise
in analogy to the Parker mode problem.

The PML method can easily be generalized to compute resonances in open three-
dimensional structures, see for example Hu (2004). However, the corresponding
eigenvalue problems are in general extremely large. Therefore, exploring the full
spectrum with adequate resolution is not feasable at present and we have to make
use of Krylov subspace methods in order to obtain the resonances in a particular
frequency domain. The resonant field around the open structure can then be used
to compute the far-field pattern of that resonant mode with the help of Green’s
representation formula (Colton & Kress 1997, theorem 2.4), as done, for example, in
Hwang et al. (1998) for a related electrodynamic problem (note that they used e+iωt

instead of e−iωt ).

We would like to dedicate this paper to the memory of Ralph Parker who pioneered
the idea of acoustic resonances in turbomachinery cascades and ducts containing
plates. We are grateful to Jay Hardin and two referees for constructive criticism. Part
of this work was funded by the German Aerospace Research Programme.



282 S. Hein, T. Hohage and W. Koch

REFERENCES

Agarwal, A. & Morris, P. 2002 Investigation of the physical mechanisms of tonal sound generation
by slats. AIAA Paper 2002-2575.

Aguilar, J. & Combes, J. 1971 A class of analytic perturbations for one-body Schrödinger
Hamiltonians. Commun. Math. Phys. 22, 269–279.

Arnold, F., Holste, F. & Rose, M. 2003 The whistling pitot probe – an example for aeroacoustic
feedback mechanism in a practical application. Paper presented at DGLR-Fachausschuss-
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